
CSE 260M / ESE 260
Intro. To Digital Logic & Computer Design

Bill Siever
&

Jim Feher

This week

• Thursday:
 Studio — Here / Seigle 301

• Hw#5 posted was supposed to be posted by late Friday

• Was actually Monday. Due Sunday at 11:59pm

• Verilog!

Chapter 5 & 6

Ripple Adder

• Example: 1111 + 0001

• As a traditional math problem:

 1 1 1 1
 + 0 0 0 1
 ——————

Info in circuit

• As values in a circuit:

 0 0 0 0 <= Carry i-1 connected to carry in of i
 1 1 1 1 <= “A”
 + 0 0 0 1 <= “B”
 ——————
 0 0 0 0 <= “Sum"

Info in circuit: Initial

• As values in a circuit:

 0 0 0 0 <= Carry i-1 connected to carry in of i
 1 1 1 1 <= “A”
 + 0 0 0 1 <= “B”
 ——————
 0 0 0 0 <= “Sum"

Info in circuit: After 1st “Sum” update

• As values in a circuit:

 0 0 1 0 <= Carry i-1 connected to carry in of i
 1 1 1 1 <= “A”
 + 0 0 0 1 <= “B”
 ——————
 1 1 1 0 <= “Sum"

Info in circuit: After 2nd “Sum” update

• As values in a circuit:

 0 1 1 0 <= Carry i-1 connected to carry in of i
 1 1 1 1 <= “A”
 + 0 0 0 1 <= “B”
 ——————
 1 1 0 0 <= “Sum"

Info in circuit: After 3rd “Sum” update

• As values in a circuit:

 1 1 1 0 <= Carry i-1 connected to carry in of i
 1 1 1 1 <= “A”
 + 0 0 0 1 <= “B”
 ——————
 1 0 0 0 <= “Sum"

Info in circuit: After 3rd “Sum” update

• As values in a circuit:

 1 1 1 0 <= Carry i-1 connected to carry in of i
 1 1 1 1 <= “A”
 + 0 0 0 1 <= “B”
 ——————
 0 0 0 0 <= “Sum"

Ripple Adder: Total Time

• bits: Worst case scenario is ripple through all

• If is the propagation delay through the Carry
=

• Dictates things like maximum clock cycle for any paths/loops that use
addition

• Lots of things rely on addition!

N N

Tc
N ⋅ Tc

JLS
Wikipedia Animation

https://en.wikipedia.org/wiki/Adder_(electronics)#/media/File:RippleCarry2.gif

Carry Look-Ahead

• Divide large addition into -bit blocks

• Within each block, determine if what each column would with a carry-in to
the column

• Would it “Generate” a carry? ()

• Would it merely “Propagate” the carry? ()

• Can the carry-out be represented in terms of , , , and ?

n

gx

px

ax bx cinx gx px

 ? <= Carry in
 a <= “A”
 + b <= “B”
 ——
 s <= “Sum"

Building a Block (of 4)

Extend “prediction” to block

Pblock = P3 ⋅ P2 ⋅ P1 ⋅ P0

Gblock = G3 + P3 ⋅ (G2 + (P2 ⋅ (P1 ⋅ G0)))

Block “Prediction”

Ripple in 4 block, 16-bit CLA

B
0

++++

P
3:0

G
3

P
3

G
2

P
2

G
1

P
1

G
0

P
3

P
2

P
1

P
0

G
3:0

C
in

C
out

A
0

S
0

C
0

B
1

A
1

S
1

C
1

B
2

A
2

S
2

C
2

B
3

A
3

S
3

C
in

B
0

++++

P
3:0

G
3

P
3

G
2

P
2

G
1

P
1

G
0

P
3

P
2

P
1

P
0

G
3:0

C
in

C
out

A
0

S
0

C
0

B
1

A
1

S
1

C
1

B
2

A
2

S
2

C
2

B
3

A
3

S
3

C
in

B
0

++++

P
3:0

G
3

P
3

G
2

P
2

G
1

P
1

G
0

P
3

P
2

P
1

P
0

G
3:0

C
in

C
out

A
0

S
0

C
0

B
1

A
1

S
1

C
1

B
2

A
2

S
2

C
2

B
3

A
3

S
3

C
in

B
0

++++

P
3:0

G
3

P
3

G
2

P
2

G
1

P
1

G
0

P
3

P
2

P
1

P
0

G
3:0

C
in

C
out

A
0

S
0

C
0

B
1

A
1

S
1

C
1

B
2

A
2

S
2

C
2

B
3

A
3

S
3

C
in

Trade off: Logic vs. Time
• CLA and other tricks (Prefix adder) add logic to reduce time

• Degenerate Case: A look-up table (full sum-of-products equation)

• How many layers of logic? (Nots, ands, ors)?

• To estimate complexity, how many rows and output columns are in a table to add
two, 8-bit numbers?

• Approximately how many AND gates?
Approximately how many OR gates?
Estimate the number of inputs that may be needed on OR gates

Subtraction

• The beauty of 2’s complement

• A − B = A + B + 1

Subtraction

• The beauty of 2’s complement

• A − B = A+B + 1

Comparisons

• Equality

• Easy: Are any bits different?

• Equal to zero?

• ?

• Less than (signed): Is A<B?

• Leverage Subtraction: A<B is equivalent to A-B<0

• Subtract and check result

• General: Is A-B negative?

• But…large numbers can “overflow”.
Need to consider overflow and signs of A & B

Comparisons

ALU: Arithmetic Logic Unit
• “Heart” of CPU: Does the computation stuff.

• Basic operations

• Addition

• Subtraction

• Bitwise AND

• Bitwise OR

• Comparison (<)

ALU: Arithmetic Logic Unit
• “Heart” of CPU: Does the computation stuff.

• Basic operations

• Addition: 000

• Subtraction: 001

• Bitwise AND: 010

• Bitwise OR: 011

• Comparison (<): 101

Memory / Storage

• Common types

• Static Random Access Memory (SRAM)

• Dynamic Random Access Memory

• Read Only Memory (contents can’t be easily changed)

Memory / Storage
• General Approach

• Store in a 2D grid of elements

• Call each row a “word”

• Each row has an index to access the content of the entire row

• Concept: Computer programming

• An Array (List) is a representation of memory

RAM: SRAM vs. DRAM

https://www.youtube.com/watch?v=0rNEtAz3wJQ

SRAM vs. DRAM
• S = “Static”/Unchanging (well, only changing when requested!)

• Could be build from D Flip Flops (or similar “self-reinforcing” circuits)

• D = Dynamic: Values fade if not refreshed

• RAM: “Random Access”

• About performance of reading/updating

• Time take (propagation delay) does not depend on index requested

ROM

• Read Only

• But still “Random Access” performance

• Fixed look-up table. Could be built with combinational logic!

• Earlier example of “adder” could just be a ROM

• M = Word size

• N = “address size”

• How many total bits are stored?

Reading Memory

Address

Data

ArrayN

M

• One approach

• Bits are “enabled” to connect
to shared output line

Memory Structure

wordline311

10

2:4
Decoder

Address

01

00

stored
bit = 0wordline2

wordline1

wordline0

stored
bit = 1

stored
bit = 0

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

bitline2 bitline1 bitline0

Data2 Data1 Data0

ALU Operations

• Need TWO inputs: need a memory structure that provides two values
(I.e. dual output ports)

• The “Register File”

• Also supports writing (updating)
32
32

32

A1

A3
WD3

RD2
RD1

WE3

A2

CLK

Register
File

JLS Register File 
(W/ D Flip Flops)

FPGA
• Field Programmable

• Gate Array

• Lattice iCE40 UP5k: Architecture Overview

• RAMs, (Dual and Single Port)

• Look Up Tables (LUTs): 4 inputs

• D Flip Flops

• Lots: ~5,000

Next Time

• Studio

