CSE 260M / ESE 260
Intro. To Digital Logic & Computer Design

Bill Siever
&
Jim Feher

This week

 Thursday:
Studio — Here / Seigle 301
Bring Kits (1 per group)— will be used briefly

« Hw#6 Expected this week.

* Will post to Piazza when available Will span week.

Chapter 5 & 6

Studio Review: Register File

 ALU will Need TWO inputs: need a memory structure that provides two
values (l.e. dual output ports)

* The “Register File”

e Also supports writing (updating)

Register
WD3 File

Chapter 6

Architectures

* “Architecture”: Programmer’s view of CPU

» “Instruction Set Architecture” (ISA):
Precise details of structure of cpu model, instructions, their semantics

* Examples: RISC-V, ARM, MIPS, x86/I1A64

* Microarchitecture: How CPU is built to read/do ISA

* Where Digital Logic becomes actual machine!

https://en.wikipedia.org/wiki/Instruction_set_architecture

RISC-V ISA

* “Open Source” ISA

 Book Covers / PDFE: www.yellkey.com/majority (good for 24 hours)

e Assembly Language

 Machine Language

https://pages.hmc.edu/harris/ddca/ddcarv/DDCArv_AppB_Harris.pdf
https://www.yellkey.com/majority

Registers

Name Register Number|Usage

zero x0 Constant value O

ra x1 Return address

sp X2 Stack pointer

ap x3 Global pointer

tp x4 Thread pointer

t0-2 x5-7 Temporaries

s0/fp x8 Saved register / Frame pointer

s X9 Saved register

a0-1 x10-11 Function arguments / return
values

a2-7 x12-17 Function arguments

s2-11 x18-27 Saved registers

t3-6 x28-31 Temporaries

RISC-V Design Criteria

1. Favor regularity (things that are consistent)
a=b+c => add a,b,c
Subtract? (a=b-c)
0 == Sy @l e

2. Make most used instructions fast (largest impact on performance)

3. Smaller is (usually) faster. Small, efficient memory can be key to performance.
Like...the register file!

4. Can’t do everything well: Compromises are necessary

Basic Model

 Machine is basically 2-3 memories + CPU
* Registers (small, easy to use; Temporary/ephermeral)
 Ex: You have 31, 32-bit data registers = 124 Bytes

e RAM: Place for most data (Gigabytes!)

 Program Memory: Possible in RAM or some additional “program memory”

Basic Model

 Machine has small primitive set of “commands” in a few rough categories:

e Data Manipulation: “Computation” (typically uses an ALU)
siekel @, el it

« Data Movement: Move data between registers and RAM or initializing values
lw tO, 8(sp)
Iy el S

 Flow Control: Controlling what instruction happens next (loops, if/else, functions)
el 0, £l Clene

“Stored Program” Concept

 Assembly instructions can be represented by numbers
e A substitution code: Replace symbols with numbers using pattern

« Convertto add t0O,tl,t2 to machine code (32-bit hexadecimal)
(Hint: t0 = x05)

e What about sub t0,tl1,t2 ?

e« Whyai?

Assembly Language Programming
Basic Data Manipulation (ALU)

e (Independent / non-cumulative) Examples: Assuming a in s0, b in s1, etc.
e a=b+c-d
e a=b+4

U &=/

e a=b

Big Picture: add tO, ti, t2

PCSrc
ResultSrc
MemWrite
op ALUControl,,
funct3 [ALUSrc
funct7, ImmSrc,

Zero |RegWrite
_____/

Control
Unit

Cll_K

WE3
A1 RD1 Slce Zero

ALUResult ReadData

A RD

Instruction
Memory : A2 RD2 0 |SrcB
: A3 1

Register
WD3 "File

Loops & Labels: Basic

e Label: Used in assembly language...to label a line of code
 Instructions are in a memory
* They have an index
e Labels turn into a number for that index

e Syntax: identifier:

 Use: Loops, if/else (decisions), functions/methods

Loops & Labels: For-loop

e Label: Used in assembly language...to label a line of code

// add the numbers from O to 9

int sum = 0; // Use sl

nt 1 // Use s0

for (1 = 0: i < 16; | = | il
sum = sum + 1;

}

Data / RAM

* Arrays (in programming languages) are just a representation of a segment of
RAM

 So, RAM works like arrays — index based
* There’s a “base”: The index that it starts at

« However, RAM is an array of BYTES

e Data types like an ‘int" are 4 bytes

Data / RAM

 Assume array hamed scores starts at address 100. l.e., RAM[100]

 What is the RAM index of scores|[1]

int 1.
int scores[200];

Arrays

// use sl
// use sO@ for the base of scores

for (i = 0; 1 < 260 | = 1 1
scores[1] = scoresji] t 10

Next Time

e Studio

